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1.Introduction 
 

  Everyday transactions from few years ago required some physical existence have been replaced by 

electronic applications. Users may now use friendly, fast and safe interfaces to perform easily numerous tasks, 

varying from money transfers using the web and remote health checks to e-learning and e-commerce. Being 

  Abstract  

 
 A design methodology for incorporating Residue Number 

System(RNS)/polynomial Residue Number (PRNS) in Montgomery 

modular multiplication in r respectively, as well as a VLSI 

architecture of a dual -field residue arithmetic Montgomery 

multiplier are presented in this paper. As analysis of input/output 

conversions to/from residue representations, along with the proposed 

residue Montgomery multiplication algorithm, revels common 

multiply-accumulate data paths both between the converters and 

between the two residue representations. A versatile architecture is 

derived that supports all operations of Montgomery multiplication in 

and, input/output conversions, Chinese Reminder 

Theorem(CRT)/Mixed Radix Conversion(MRC) for integers and 

polynomials, dual -field modular exponentiation and inversion and 

same hardware. Detailed comparisons withstate-of-the-art 

implementations prove the potential of residue arithmetic exploitation 

in dual-field modular multiplication. Based on irreducible 

pentanomials a low latency Montgomery multiplication is presented 

over GF(2
m
).To decompose the multiplications into a number of 

independent units an efficient algorithm is presented to achieve the 

parallel process. “pre-computed addition” to reduce the latency 

further method is introduced. Comparing with other existing methods 

the proposed method having the lesser area delay and power delay. In 

case of NIST recommended pentanomials, it having the same or 

shorter critical path and involve nearly one-fourth of the latency. 
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exposed in an unprecedented number of threats and frauds, safe connectivity for all network-based systems has 

now become a predicate necessity. The science of cryptography provides the necessary tools and means towards 

this direction. Cryptographic hardware and software play now a dominant role in e-commerce, mobile phone 

communications, military applications, and private emails, digital signatures for e-commerce, ATM cards, and 

web banking, maintenance of health records and so on.  

 The systematic arithmetic realization over finite fields of the form GF (2n) , where n ϵ Z and n ≥ 1 , or 

the form GF (p) here p is a prime. For the security purpose cryptographic application form special case, for this 

they need large integer operands. For achieving a favorable cryptosystem performance, the effective field 

multiplication with large operands is essential, since multiplication consumes most time and area to employ 

modular arithmetic there is a need to increase cryptosystems conveying modular arithmetic. 

 The parallelization of their operations is an obvious technique to achieve this method. Due to their 

performing ability of fast and parallel arithmetic RNS and PRNS have renewed scientific interest due their 

ability. There is no need for exchanging information between paths but using RNS/PRNS a given path serving a 

larger range of data is replaced by parallel paths. It results residue system helps to reduce the complexity and 

power consumption of larger word length arithmetic units. Otherwise, RNS/PRNS executions tolerate the extra 

cost of output converters to interpret from PRNS or RNS to binary representations and input converters to 

interpret numbers from a standard binary format into residues.  

In this paper a dual field Montgomery modular multiplication algorithm  for integer GF(p) and for 

polynomial GF(2n) are presented in a new methodology for embedding residue arithmetic. Valid PRNS or RNS 

incorporation are examined which are need to be satisfied mathematical conditions. The resulting architecture is 

highly parallelizable and versatile, as it supports RNS/PRNS-to-binary and binary-to-RNS/PRNS conversions, 

Mixed Radix Conversion (MRC) for integers and polynomials, dual-field Montgomery multiplication in the 

same hardware.  

2.SYSTEM DESIGN 
 

 Recently, numerous number of systems have been anticipated to make computers more powerful. One 

of these systems, which has benefits in computing large numbers, is Residue Number System (RNS). Residue 

Number System is a particular interest in computing large numbers due to its properties of parallelism, carry-

free, and high-speed arithmetic. In RNS, we first choose a set of relatively prime moduli to be the base of this 

system. Then, the numbers in RNS are represented by the residue of each 

modulus, and the computations can be performed on each residue independently. Thus, RNS can be applied to 

many applications, such as digital signature scheme and signal processing .To apply RNS in large number 

arithmetic, the conversion between RNS and the decimal number system is an important issue. Recently, many 

researches [2, 3, 9] have been proposed to simplify and accelerate the conversion by choosing a specific set of 

moduli. Most of these researches choose each modulus being near the power of 2 to reduce the conversion time, 

such as {2n-1, 2n, 2n+1} and {2n-1, 2n, 2n+1} [2, 3]. However, for the general moduli set, the conversion can 

only be done by the Chinese Remainder Theorem (CRT) or Mixed Radix Conversion (MRC). To convert RNS 

to the decimal number system, MRC is strictly performed in the sequential processes. On the other hand, CRT 

can be executed by parallel processors to make it faster than MRC. Thus, most of the previous researches [1, 7, 

11] are based upon CRT when the general moduli.  

3.PRIME SIZE FINITE FIELD:GF(p) 
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The rules for a finite field with a prime number (p) of elements can be satisfied by carrying out the 

arithmetic modulo-p. If we take any two elements in the range 0 to p - 1, and either add or multiply them, we 

should take the result modulo-p. 

Example 1: Table 1 and 2 shows MODULE-2 addition and multiplication respectively for GF(2) , here p equals 

2:- 

 

Example 2: In Tables 3 and 4, the results for GF(3) are shown where p is equal to 3. 

 

 

Thus in GF(3), the additive inverse of 0 is 0 and 1 is 2 vice versa. The multiplicative inverse can be 

found by identifying from the table pairs 

of elements whose product is 1 . In the case of GF(3), we see that the multiplicative inverse of 1 is 1 and the 

multiplicative inverse .Another approach can be adopted to finding the multiplicative inverse that will be more 

generally useful and will lead towards the method for constructing other field sizes. In any prime size field, it 

should be shown that there is everytime at least one element whose powers constitute all the nonzero elements 

of the field. This element is said to be primitive. For example, in the field GF(7), the number 3 is primitive  

powers of 3 just repeat the pattern as 36 = 1 . Note that we can carry out multiplication by adding the powers of 

3, thus 6 x 2 = 33 x 32 = 35 = 5. Hence we can find the multiplicative inverse of any element as 3i as 3-i = 36-i. 

Thus in GF(7) the multiplicative inverse of 6 (33) is 6 (33),  4 (34) is 2 (32),  and 5 (35) is 3 (31). 

Example 3: show how you can make subtraction and division operatons over GF(7) by constructing addition 

and multiplication 

Sol:- the elements of GF(7) are (0,1,2,3,4,5,6 ) since p=7. The addition and multiplication over 
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The addition table shown above is used also for subtraction. If we subtract 6 from 3, we first use the addition 

table to find the additive inverse of 6, which is 1. Then we add 1 to 3 to get the result [ i.e., 3-6=3+(-6)=3+1=4]. 

For division, we use the multiplication table. To obtain the result as [3÷2=3.(2-1)=3.4=5] we have to find the 

multiplicative inverse of 2 which is 4 and then we multiply 3 by 4. 

4.Montgomery Multiplication 
 

For computing a, b and mod m positive integers a, b and m Montgomery multiplication is used. When 

there are a large number of multiplications to be done with the same modulus m, and with a small number of 

multipliers this method reduces the execution time on a computer. But if possible there can be a large enough 

number to be valuable by speeding up. costly execution time is result of reductions in modulo m which are 

essential division operations. 

 
                Fig2: Montgomery multiplication 

The multipliers a and b should be less than the modulus m for the use of montgomery multiplication. We 

must have gcd(r, m) = 1and introduces integer which must be greater than m.. This technique, basically changes 

the reduction modulo r from a reduction modulo m. If r is a power of 2, we must have m odd, to meet the gcd 

requirement, Usually r is chosen to be an integral power of 2, so the reduction of  modulo r is just a masking 

operation; that is, retaining the lg(r) low-order bits of an intermediate result, and removing higher order bits. 
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The method: 

1. find two integers r
−1

 and m′  such that rr
−1

− mm′1. 

This can be done by the prolongedgcd algorithm. There is a binary prolonged gcdalgorithm which does no 

divisions, and modifysignificantly when one argument (r) is a power of 2 and the other (m) is odd. In arithmetic 

computation, Montgomery reduction is an algorithm introduced in 1985 by Peter Montgomery that allows 

modular arithmetic to be performed efficiently when the modulus is large (typically several hundred bits).A 

single application of the Montgomery algorithm (Montgomery step) is faster than a "naive" modular 

multiplication 

 

Because numbers have to be converted to and from a particular form suitable for performing the 

Montgomery step, a single modular multiplication performed using a Montgomery step is actually slightly less 

efficient than a "naive" one. In this case the greater speed of the Montgomery steps far outweighs the need for 

the extra conversions.Working with n-digit numbers to base d, a Montgomery step calculates

. For the purpose of exposition, we shall illustrate with d = 10 and n = 4. To 

turn this into a modular operation with a modulus r, add immediately before each shift, whatever multiple of r is 

required to make the value in the accumulator a multiple of 10. The result will be that the final value in the 

accumulator will be an integer (since only multiples of 10 have ever been divided by 10) and equivalent 

(modulo r) to 472 × a ÷ 10000. Finding the proper multiple of r is a simple operation of single-digit arithmetic. 

The Montgomery step is faster than the methods of "naive" modular arithmetic because the decision as to what 

multiple of r to add is taken purely on the basis of the least significant digit of the accumulator. This permit the 

use of carry-save adders, which are more faster than the conventional kind but are not instantly able to give 

close values for the more significant digits of the result. 

This note tells about the practice and theory of Montgomery multiplication. Montgomery multiplication 

is a method for computing ab mod m for positive integers a, b, and m.
1
Itdecreases the execution time on a 

computer when there are a huge number of multiplications to be done with the same modulus m, and with a 

small number of multipliers. In particular, it is useful for computing a
n
mod m for a large value of n. The number 

of multiplications modulo m insuch a computation can be reduced to a number significantly less than n by 

successively squaring and multiplying according to the pattern of the bits in the binary expression for n. But it 

can still be a large enough number to be worthwhile speeding up if possible. The difficulty is in the reductions 

modulo m, which are, essentially, division operations, which are costly in execution time. If one defers the 

modulus operation to the end, then the products will grow to very large numbers, which slows down the 

multiplications and also the final modulus operation. 

The multiplier a and b should be less than the modulus m for the use of Montgomery multiplication. 

We should have gcd(r, m) = 1 and presentadditional integer m which must be lesser than r. The technique, 

essentially, changes the reduction modulo m to r. If r is a integral power of 2, we must have m odd, to satisfy the 

gcd requirement, Usually r is chosen to be an integral power of 2, so the decreased modulo r is simply a masking 

operation; i.e, retaining the lg(r) lower order bits of an midway result, andremoval of  higher order bits. 
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5.RESULT 

RTL SCHEMATIC 
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TECHNOLOGICAL SCHEMATIC VIEW 

 

DESIGN SUMMURY  
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6.SIMULATION 

 

7. Conclusion: 

In this paper, for montgomery multiplication we presented a novel on PCA technique and modular reduction 

scheme  with RNS over GF(2
m
)based on irreducible pentanomials. To elaborate the efficiency of the 

plannedmethod, we have intended the multiplier aimed at the irreducible pentanomial 

  for ease of conversation. In this the Montgomery 

multiplication is rotten by RNS into two simultaneous blocks and we have resulting a lower-latency multiplier 

using the recommended modular reductionsystem using PCA. In this method we have lower area-delay and 

power-delay difficulties than the anewstated multiplier for irreducible pentanomial, with nearly one-fourth of 

the delay of the other, in terms of the National Institute of Standards and Technology recommended (NIST) 

pentanomials. 
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